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Explicit total variation diminishing (TVD) numerical methods have 
been used in the past to give convergent, high order accurate solutions 
to hyperbolic conservation equations, such as those governing f low in 
oil reservoirs. To ensure stability there is a restriction on the size of time 
step that can be used. Many petroleum reservoir simulation problems 
have regions of fast f low away from sharp fronts, which means that this 
time step limitation makes explicit schemes less efficient than the best 
implicit methods. This work extends the theory of TVD schemes to both 
fully implicit and partially implicit methods. We use our theoretical 
results to construct schemes which are stable even for very large time 
steps. We show how to construct an adaptively implicit scheme which 
is nearly fully implicit in regions of fast flow, but which may be explicit 
at sharp fronts which are moving more slowly. In general these schemes 
are only first-order accurate in time overall, but locally may achieve 
second-order time accuracy. Results, presented for a one-dimensional 
Buckley-Leverett problem, demonstrate that these methods are more 
accurate than conventional implicit algorithms and more efficient than 
fully explicit methods, for which smaller time steps must be used. The 
theory is also extended to embrace mixed hyperbolic/parabolic (black 
oil) systems and example solutions to a radial f low equation are 
presented. In this case the time step is not limited by the high f low 
speeds at a small radius, as would be the case for an explicit solution. 
Moreover, the shock front is resolved more sharply than for a fully 
implicit method. © 1992 Academic Press, Inc. 

1. I N T R O D U C T I O N  

Explicit flux limiting schemes for the solution of hyper- 
bolic conservation laws have already been discussed in some 
detail [1, 2]. For one-dimensional scalar equations, it is 
possible to demonstrate that these schemes are total varia- 
tion diminishing (TVD), which means that the solutions are 
stable and will generally converge to the correct physical 
solution, even if the solution contains discontinuities or 
shocks. The schemes maintain second-order accuracy in 
smooth regions and sharply resolve any discontinuities. 

In this paper we will construct TVD schemes which 
are particularly appropriate for solving the component 
conservation laws in petroleum reservoir simulation, which 
presents some problems not seen with the solution of the 
Euler equations. Often in reservoir simulation the pressure 
field is solved implicitly, followed by an explicit update of 
the conservation equations, for which high order techniques 

can be used. In compositional simulation the equilibrium 
concentration of each hydrocarbon component in gas, oil, 
and aqueous phases also needs to be calculated at the com- 
puted pressures and temperatures in the reservoir. For large 
multidimensional problems almost all the computer time is 
spent solving for the fluid pressures and phase equilibrium. 
The saturation and concentration updates are com- 
paratively fast. However, the use of a low order or unstable 
numerical technique for updating the saturations can lead 
to inaccurate results. It is thus generally worthwhile to use 
a stable high order technique, which improves the resolu- 
tion of the simulation, without appreciably increasing the 
total time used. The application of high order Godunov 
schemes in reservoir simulation has been discussed by 
Trangenstein et  al. I-3-6]. Another second-order method, 
flux-corrected transport, has been used in multidimensional 
fluid flow simulations by Christie and Bond [7]. It is most 
efficient to solve the pressure equation as infrequently as 
possible, which implies the use of large time steps. However, 
the explicit methods which have been proposed may then 
become unstable. Low order implicit techniques, in 
contrast, are stable even for large time steps, but the 
accuracy of the solution is often poor. 

There are several circumstances which force the use of 
implicit schemes even though the accuracy of higher order 
explicit schemes could be advantageous. These are applica- 
tions which normally feature very high flows in some 
restricted region of the reservoir and moderate to low flows 
elsewhere. Examples include radial flow or quasi-static 
situations with a front moving slowly perpendicular to a fast 
flow direction, such as gravity over-ride or coning. In these 
cases, the regions of high flow drastically reduce the time 
step possible from explicit formulations, which makes 
the simulation extremely inefficient. Thus stable implicit 
methods with a large time step are often used. The implicit 
models are normally of first-order accuracy in time and 
space. In the regions of moderate to low flow rates, higher 
order techniques would greatly improve the accuracy of the 
model's predictions. 

The ideal numerical scheme for reservoir engineering 
problems would be stable for large time steps and yet 
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resolve shock fronts accurately. This can be achieved by an 
adaptive scheme which is nearly fully implicit in regions of 
fast flow, but which may be explicit near slower moving 
shocks. We approach this problem by using methods which 
have the following properties: 

(1) Strictly conservative. 

(2) Second-order spatially accurate in smooth regions 
of the flow. 

(3) At best, second-order accurate in time locally. 

(4) Unconditionally stable. 

We describe several schemes which are appropriate for 
different types of problems. We discuss: 

(1) A second-order space and time-accurate fully 
explicit TVD scheme due to Sweby [1, 2]. This method has 
a restriction on the size of time step which can be used. For 
reservoir engineering problems this approach is suitable 
for problems where the shock fronts represent the fastest 
flowing portions of the system, such as the linear Buckley- 
Leverett problem. 

(2) A second-order spatially accurate and first-order 
time accurate TVD scheme based on scheme (1). This 
scheme has no particular advantages, but is presented as a 
building block for an adaptively implicit method. 

(3) A fully implicit TVD scheme which is uncondi- 
tionally stable. This method is ideal for quasi-steady state 
problems, which feature several regions of fast flow and 
where the resolution of sharp fronts is not important. 

(4) A partially implicit/partially explicit TVD scheme. 
The degree of implicitness is calculated by a global stability 
criterion. This scheme is unconditionally stable but allows 
the accurate resolution of shocks if there are no regions of 
fast flow. This is a reliable scheme for general purpose 
simulation. 

(5) An adaptively implicit scheme like (4) but based on 
a local stability criterion, which allows the scheme to be, at 
best, second-order accurate near slow flowing shocks yet 
fully implicit and therefore stable in regions of fast flow. This 
method is appropriate for problems where the fluids are 
moving rapidly in.a region of the reservoir some way from 
the front, such as radial flow near wells and the gravity 
override of a light gas over heavier oil or water. 

There is some discussion on how the schemes could be 
extended to two and three dimensions. The schemes we 
develop have been designed for the simulation of flow in 
porous media and steady state problems, where it is efficient 
to use large time steps. 

2. CONSTRUCTING NUMERICAL SCHEMES 

In this section we will develop TVD schemes for a one- 
dimensional scalar conservation equation• We will use the 

theoretical TVD criteria which are derived in the appendix. 
We begin by construcing an explicit method which is, at 
best, second-order accurate and then consider the temporal 
stability and accuracy of partially implicit schemes. At the 
end of this section we will discuss schemes coupled with a 
parabolic pressure equation. 

As a relevant example, we will describe schemes for the 
solution of the Buckley-Leverett equation. This equation 
describes the one-dimensional flow of two incompressible 
fluids ("water" and "oil") in a porous medium. It can be 
written as 

as 8 f  (2.1) 

where the flux f (s)  is a known function of s the saturation 
of the water phase, 

f (s)  = Vtfw(S ), (2.2) 

where vt is the total velocity of the two phase system and the 
fractional flow of waterfw in the absence of gravity is given 
by 

grw(S)/[.2w 
fw(S) - Krw(S) ktw + Kro(S)/#o' (2.3) 

Krw and Kro are the relative permeabilities of the water and 
oil phases, respectively, and /~w and #o are the fluid 
viscosities. 

2.1. Explicit Flux Limited Schemes 

In this section we will briefly review explicit TVD schemes 
before constructing novel implicit methods. We will develop 
flux limiting schemes following the approach of Sweby 
[ l, 2 ]. These schemes have also been described by van Leer, 
and Roe, Sweby and Baines, [8-12]. Other explicit high 
order methods include Godunov schemes [ 13 ], which have 
been applied to black oil models [3-6], and flux corrected 
transport [14], which has been extended to multidimen- 
sional, multicomponent fluid flows [7]. 

First-order schemes, such as the Engquist-Osher method 
[ 15 ] are stable and convergent and obey the TVD criteria 
derived in the appendix. However, numerical dispersion 
smears out the shock fronts, so the solutions are only 
accurate if a large number of grid blocks are used. Most 
unconstrained second-order schemes such as Lax-Wendroff 
and two-point upstream weighting suffer from less numeri- 
cal dispersion, but produce spurious oscillations about 
shock fronts. 

Flux limiting methods are both accurate and stable. 
Thus discontinuities are resolved accurately without either 
excessive smearing or unphysical oscillatory instabilities. 
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This is achieved by limiting the second-order corrections to 3. 
the numerical flux to obey the TVD criteria. If this is done 
the total variation in the solution will not increase with 
time: a monotonic profile (no maxima or minima) will 2 
remain monotonic without developing unstable and 
unphysical blips. ~ (r) 

We write an explicit finite difference approximation to the 
1. 

saturation update as 

s7 +' = s," - 2[F7+ 1/2 - Fe-u2]." (2.4) 

The superscripts and subscripts refer to the time step and 
the grid block respectively. 2 = At /Ax .  Fi+u2 and F~_1/2 
represent numerical approximations to the flux,f, across the 
grid cell edges. If we assume that the characteristic velocity 
of the saturation profile, v = df/ds, is positive, then we find 
an approximation for F about an upstream value FT, which 
is accurate to second order in space and time (i.e., up to 
O(zJx)  2, O(At )2 ) :  

n . (Y /+1Ve(FT+_F,I ) ( l_2/ )7) .  Fi+ l/2 = Fi  + 2 (2.5) 

F7 represents the f luxfcalculated at s7 and v7 = df/dsl s =,7. 
The first term in (2.5) gives single point upstream weighting. 
The second terms are O(Ax)  2, O(At)  2 corrections to the 
numerical fluxes. ~b, the limiter, is a function of r, which is a 
ratio of successive second-order terms, 

( F T -  F T _ , ) ( 1 - 2 / ) i _ , )  
rT+ u2 - (FT+ 1 _ FT)( 1 _ 2/)7 ) (2.6) 

and ~b(rT+ 1 / 2 ) i s  written as ¢7+ 1/2 in (2.5). 
The results of the appendix may be used to find limits on 

the function ~b(r) such that the scheme remains TVD. Since 
this section is a review of previous work, we will not derive 
these limits here. Derivations of the TVD region are given in 
Ref. [1]  and are also demonstrated in Section2.3 as a 
special case of a partially implicit method. We would also 
like the scheme to be second-order accurate in smooth, 
monotonic portions of the profile. Figure 1 shows the 
second-order and TVD regions of the function ~b(r). A 
suitable choice of function, which gives good results is the 
van Leer limiter [-9] 

r + l r l  
¢- l + r "  (2.7) 

It is worth pointing out that when ~b = 0 the scheme reverts 
to single-point upstream, which is only first-order accurate. 
When ~b = r, we have the Beam-Warming scheme. When 
~b = 1.0, the scheme is Lax-Wendroff  and, when ~b = 2.0, the 

O. 

Two P o i n t  Upst r /ex~m 
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FIG. 1. Second-order TVD region. The second-order TVD region is 
shaded. The limiters corresponding to the midpoint and two-point 
upstream schemes are indicated. 

scheme uses a downstream weighted flux. All of these values 
of ~b are possible when the van Leer limiter is used. 

The maximum time step that can be used before the 
method becomes unstable (the TVD criteria are violated) 
is dependent on the Courant-Friedrichs-Lewy (CFL) 
condition [16]. If /)max is the largest wavespeed (df /ds)  
encountered, then the CFL number is defined as 2Vmax. 
The van Leer limiter is stable for CFL numbers ~ 1. 

Figure 2 compares this TVD scheme with the single-point 
upstream scheme (all explicit) for a non-linear waterflood, 
using the flux function 

3s 2 

f ( s )  - 3s 2 + (1 - s )  2 (2.8) 

and a CFL number of 0.4. The exact solution (shown by the 
solid curve) has a shock front from a saturation of 0.5 to 
zero. The single point upwind scheme (~b = 0) smears this 
front over several grid blocks. The TVD method decreases 

1.0 

0 . 8  

0 .6  

0 . 4  

0 .2  

+ 

I 
0 " 0 0 ,  I O. 2~3.  

I 

+ 

<1+ 

FIG. 2. Solutions to a 
schemes and a CFL number of 0.4 and N =  40 grid blocks. Crosses, 
first-order upstream; triangles, flux-limiting method. The solid line is the 
exact solution. 
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Buckley-Leverett problem with explicit 
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the numerical diffusion and resolves the discontinuity over 
approximately half the grid blocks required by the first- 
order method. 

2.1.1. First-Order Explicit Scheme 

A simplified version of this TVD scheme, which is second- 
order spatially accurate, but only first-order accurate in 
time, writes the cell edge flux Fi+ 1/2 as 

~ n 

F i + l / 2 = F i  q- 2 ~ i+1 i ) '  (2.9) 

where the time correction ( 1 -  2v7) has been ignored. The 
scheme is the same as before, where we define 

F T -  F7 a 
" , (2.10) ri+ 1/2 - -  F7 + 1 -- Fi 

and use the van Leer limiter, (2.7). When ~b = r, the scheme 
is the two-point upstream weighted scheme. When ~b = 1.0, 
the scheme is midpoint weighted and when ~b = 2.0, the 
scheme uses a downstream weighted flux. On its own there 
is nothing to recommend this scheme as it is only O(At) and 
only stable for CFL numbers up to 1, rather than 1 for the 
second-order method. We only introduce the scheme here, 
since it will be used to construct a partially implicit, par- 
tially explicit method which reintroduces a second-order 
time correction to the flux. The advantage is that then stable 
solutions can still be calculated, even for CFL numbers 
greater than 1. 

Figure 3 compares this method with single-point 
upstream weighting for the example problem shown in 
Fig. 2. 
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FIG. 3. Solutions to a Buckley-Leverett problem as in Fig. 2. Crosses, 
first-order upstream weighting; triangles, a simplified first-order in time 
flux limiting scheme. 

2.1.2. Error Norms 

We may quantify the accuracy of the schemes by comput- 
ing error norms. An l norm Ll is defined as 

Lt= ~ l s , -  sT"C'l l , 
i 1 

(2.11) 

where s7 xaCt is the exact solution at the centre of grid block 
i in a computation over N cells. Lt is calculated on grids of 
various N at a fixed value of 2. The order p of the scheme is 
defined such that as N ~ ~ ,  L t ~ N P. For exact solutions 
which feature a discontinuity, such as the Buckley-Leverett 
problem presented here, the error is dominated by O(1) 
inaccuracies in the few computed points near the shock, 
where even a flux limited scheme reverts to first order to 
ensure stability. Thus, at best we expect L1 ,-~ C/N for large 
N and some finite prefactor, C. C will depend on the 
problem and the scheme. 

Figure4 shows N times the L1 norm plotted against 
log N. For first-order convergence NL1 is a constant, C. 
Single point upstream weighting appears, for this problem, 
to display worse than O(1/N) convergence. The simplified 
TVD method is a considerable improvement over single- 
point upstream weighting, although it is not as good as the 
Sweby TVD method. 

The flux limited scheme with a time correction is "second 
order" in the sense that we do see O(N 2) convergence of 
the error norms for problems whose exact solutions are con- 
tinuous with continuous first derivatives [17]. This may be 
demonstrated by looking at a simpler problem--the linear 
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FIG. 4. Lx error norm multiplied by the number  of grid blocks N as a 
function of log,o N. Crosses, single-point upstream weighting; triangles, 
Swehy flux limiting scheme; squares, time-uncorrected flux limiter. The 
error norm is computed on the solution to the Buckley-Leverett problem. 
The presence of the shock means  that at best the schemes are first-order 
convergent - -NLl  is a constant. 
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2.2. Implicit Methods 

Based on the explicit scheme described in Section 2.1.1, 
an implicit version of the TVD midpoint scheme will now be 
developed. Implicit modelling requires the calcuiation and 
use of fluxes and limiters at the unknown (n + 1)th time 
level. 

Following from the previous section the scheme is set up 
a s  

Sn+t n ~r~n+ 1 F "+1 ] = 0 .  (2.12) --Si Q L ' ~ L ~ i + I / 2  - i 1/2 

As before, if df/ds is positive, an approximation for F is 

(2.13) 

(2.14) 

FIG. 5. Linear convection of a sin 2 pulse at a CFL number of 0.4 
across one-third of the grid with N = 30. Crosses, single-point upstream 
weighting; triangles, Sweby flux limiting scheme; squares, time- 
uncorrected flux limiter. 

n +  n + l ;  Fi 1 represents the flux f calculated at s; ~b, the limiter, 
is function of r, where r is now calculated at the (n + 1)th 
time level, 

advection of a pulse. We set the flux f ( s )= s and use an 
initial condition s(x, 0 ) =  sin2(3rc(x- 1 )/N) for N/3 >~ x >~ 0 
and s(x, 0) = 0 elsewhere. We set Ax = 1. Figure 5 shows the 
computed and exact profiles after transport across one-third 
of the grid at a CFL number of 0.4 with N = 3 0 .  The 
flux-limiting scheme without time correction tends to over- 
square the profile. Figure 6 shows the L1 error norms for 
N =  30 to N=3000 .  The Sweby TVD scheme displays 
second-order accuracy, while the single-point upstream 
weighted scheme and the simple flux limiter are only first- 
order accurate. 

~ n + l  p n + l  
n + l  x i  - -  ~ i - - 1  

ri+ 1/2 - -  - ~ ]  - - - - ~ - i  " 
~ i + 1  - -  ~ i  

As above we choose the van Leer limiter, (2.7). 

2.2.1. Solution by Newton-Raphson Iteration 

Equation (2.12) is a non-linear expression for s 7 + 1, which 
can be solved using Newton-Raphson  iteration [18, t9].  
Equation (2.12) may be written as 

G(sT+l )=0 ,  (2.15) 

where 

- - 1 . 0  

- I  o 
i~ ~ 
0 
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- - 4 . 0  
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l o g  N 
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FIG. 6. L 1 error norms; loglo L~ is plotted against loglo N for the 
linear advection problem shown in Fig. 5. Crosses, single-point upstream 
weighting; triangles, Sweby flux limiting scheme; squares, time-uncorrected 
flux limiter. 

G(sT+l)=sT+t_sT+)r~. ,+l _•,+1 1 (2.16) " ~ k ~ i +  1/2 ~i--1/2J 

and s 7 is known, and the numerical fluxes, F, as functions of 
s7 +1 may be calculated as above. The solution is obtained 
iteratively. For  the first iteration (k = 1) we use s~= '  = s 7. 
Subsequent estimates for the updated saturations are found 
as follows. First, we define the difference in saturation 
between two Newton iterations: 

5Si=S~ +1 --Sf. ( 2 . 1 7 )  

We assume that s~ is known and we calculate 6s to find a 
,+1 Then to first order in the more accurate estimate of s i . 

small quantity 5s, 

Gki+l=Gki J~_(~Gi~k \ c3sj J 6sj, (2.18) 
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where the superscript on G labels the iteration and the 
subscript labels the grid block. The value of 6sj which makes 
G~ + 1 = 0, (2.15), obeys the expression 

OG i'] k 
-~sj/  6 s ~ = - G ~ .  (2.19) 

c~Gi/c~sj is a matrix of derivatives, which must be inverted to 
calculate 6s in (2.19). For  a first-order scheme, Gi is a 
function only of the saturations in the cells i and i -  1, and 
hence the derivative matrix (Jacobian) has a simple lower 
triangular form. However, in the more sophisticated high 
order schemes considered here, the Jacobian may have 
many non-zero elements, which makes the matrix inversion 
difficult. For  this reason we simplify our treatment and 
consider only first-order terms in the calculation of c~G#Osj. 
The quantity - G ~  on the right-hand side of (2.19) is still 
calculated to second order, and hence we converge to the 
correct high order solution. 

The non-zero terms in the Jacobian are then as follows: 

OG/] k df(s) (2.20) 

and 

( aG~ "]~=-2 df(s) 
Osi_l/ ds s=g ," 

(2.21) 

The iteration continues until the calculated 6sj in (2.19) is 
smaller than some convergence criterion. In the examples 
we present, we calculated the maximum 6sj over all the grid 
blocks and compared it with the LI and L ~  error norms. If 
this was less than 0.1L1 and 0.1L~, the iteration was 
stopped. This ensured that the dominant error came from 
the inadequacies of the scheme rather than failure of the 
Newton-Raphson  iteration to converge. The efficiency of 
any implicit algorithm is limited by the number of iterations 
necessary to produce convergence. 

2.2.2. Results 

In the next section we will show that this scheme is stable 
for all CFL numbers. Figures 7 and 8 show results from 
implicit schemes, for the flux function given by (2.8). 
Figure7 shows results using a single-point upstream 
weighted implicit flux at CFL numbers of 0.4, 1, and 4, 
which required on average 3, 3, and 5 Newton iterations per 
time step, respectively. Note that the single-point upstream 
implicit scheme is more diffusive than its explicit counter- 
part  (Fig. 2) at the same CFL number. For CFL numbers 
greater than 1, outside the explicit stability limit, the shock 
front is very poorly resolved. 

Figure 8 shows solutions using a TVD flux limiter at CFL 
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FIG. 7. Solutions with a first-order implicit scheme with N=40. 
Squares, CFL number of 4; triangles, CFL = 1; crosses, CFL = 0.4. 

numbers of 0.4, 1, and 4 which needed on average 3, 4, and 
6 Newton iterations per time step, respectively, to ensure 
convergence. The results are superior to single-point 
upstream weighting. The shock front is still more diffuse at 
a CFL number of 0.4, compared with an explicit method 
(Fig. 2 or 3), but the scheme is stable for larger time steps. 
Figure 9 shows the L1 error norm at a CFL number of 0.4. 
The single-point implicit scheme, like its explicit analogue 
shows worse than 1/N convergence, whilst the TVD scheme 
gives superior results and appears to be strictly first-order 
accurate as N--* oe. 

Yee et al. have proposed TVD implicit schemes [20-22],  
but found that convergence to the correct solution by 
Newton iteration using the full Jacobian was very slow if a 
high order limited implicit flux was used. They suggested 
a linearized non-conservative TVD implicit scheme. The 
number of extra Newton iterations required for convergence 
with a high order method in the example above, however, 
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FIG. 8. Solutions with a flux limited implicit TVD scheme with 
N = 40. Squares, CFL number of 4; triangles, CFL = 1; crosses, CFL = 0.4. 
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FIG. 9. L 1 error norm multiplied by the number of grid blocks N a s a  
function of log10 N as in Fig. 4. Crosses, implicit single-point upstream 
weighting; triangles, partially implicit flux-limiting scheme with 0 =  ½; 
squares, fully implicit flux limiter. 

was small using a first-order Jacobian and was more than 
compensated by the improved accuracy of the solution. 

In the examples below, a low order Jacobian is always 
used, and the number of iterations needed for convergence 
only ever exceeds a fully first-order method by one or two. 

2.3. T V D  Schemes with Temporal  Weighting 

We will now write down a conservative equation for the 
saturation update, which is partially implicit. In the pre- 
vious section we described a scheme which was first-order 
accurate in time, but stable for large time steps. In this 
section we will use a partially implicit method, which gives 
improved time accuracy without the CFL constraint seen in 
totally explicit schemes. The form of the update is 

n + l  n =  __`2[(l__Oi+1/2) Fn+U2__(l _0i_1/2) F7_1/2 ] S i - - S  i 

_ _ ` 2 [ 0 i  + r n ÷ l  _ _ O i _  p n + l  1 (2.22) 1/2~t i +  1/2 1 / 2 ~ i - -  1/22" 

We will attempt to construct a scheme where 0, the degree 
of implicitness, is fixed by a local stability constraint. The 
time step should be chosen so that the scheme sharply 
resolves shock fronts by being second-order accurate, 
while remaining stable in regions of great throughput, 
where 0 approaches 1. The scope of this method is similar 
to the work of Fryxell et al. [23], who applied an adap- 
tively implicit-explicit high order Godunov scheme to 
Lagrangian hydrodynamics. 

TVD schemes based on (2.22) have been studied by Yee 
et al. [20, 22]. However, as mentioned above they solved a 
linearized form of this equation and only considered a fixed 
value of 0. Our work will be conservative, at best second- 

order spatially accurate for both explicit and implicit fluxes, 
and we will also allow the values of 0 to be different for 
different cell edges. 

The parameters 0i+1/2 and 0i_1/2 give the degree of 
implicit weighting in the numerical flux across the right- and 
left-hand edges of cell i, respectively. 0 = 1 represents a fully 
implicit scheme, (2.12), while 0 = 0 is explicit, (2.4). 

The non-linear equation (2.22) is solved iteratively by the 
Newton-Raphson technique, as described in Section 2.2.1, 
except that now G(s7 ÷ 1) is given by 

G(s7 +1" " + ' - s 7 + ` 2 [ ( 1  ) = S i  - -  O i +  1/2)  Fi+ 1/2 

- -  ( 1  - -  0 i _  , / 2 )  F T -  ,/2] 

`2ra i [ ? n + l  _ _ 0  i 17 n + '  1 (2.23) -~- kUi+ 1/2~t i +  I/2 --  I / 2 J t i - -  i / 2 1 "  

As in the previous sections, we find an approximation for 
FT+ 1/2 using Eq. (2.5). _~+P~ +11/2 is calculated from (2.13). The 
limiter @ is chosen to make the spatial approximation in 
(2.22) both accurate and TVD. The weighting 0 controls the 
temporal accuracy of the solution: 0 = ½ gives a scheme 
which is second order in time, while a fully implicit method, 
with 0 = 1, is stable for all 2̀. We will show later how we 
control 0 to give us a stable solution of the greatest possible 
accuracy. Writing out (2.22) in full and rearranging terms 
gives 

,,+, ,, = _`2(0i+ 0 e ,/2)(F7 +' si - s i  , /2 -  - F T )  

- ,2(1 - 0 ,_  , /2)(F7 - F 7_ 1) 

- 2 0 i _ , / 2 ( F 7  +1 - F7  +1 ) _  

_ `2,k7+ 1/2 (1 - 0~+ 1/2)(F7+, - FT) 
2 

+ (I - O , _ , / 2 ) ( F T - F T _ , )  

.]An + 1 
__ ~'Y i +  1/2 LI ( iS',n + l n + l  

2 ~'i+1/2~-i+, - F i  ) 

` 2An+ 1 

+ ~ 0 ,  1/2(F7 +1 FT+?). (2.24) _ . 

We now define the following quantities: a ratio of successive 
flux differences, rT+ 1/2, which is given by (2.10), and effective 
velocities or flux gradients, defined by a spatial derivative, 

FT-FT_I 
" -  (2.25) / ) i  n n ' 

S i - - S i _  1 

and a temporal derivative, 

FT+I--F7 
n 

U i - -  n + l  n "  
S i - - S  i 

(2.26) 
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Equation (2.24) yields and 

[1 + 2u7(0,+ 1/2 - 0~_ v2)](s7 + 1 _ s~') 

~" --hV n Asn_I [(1 0 i_ 1/2)(1 ~?-2 - -  - -  , I / 2 / /  

, -  ,~ , ~ 7 + 1 / 2 1  - , + I  + 0  - ~ , + 1 / 2 ~ / - , ~ v ,  AsT+-: 
~ti+ 1/21 

x 0i_1/2 1-- q~'] 2 +Oi +a/2 i+1/2l 9 n+l I" ~ri+ 1/2_1 
(2.27) 

We now compare this equation with (A1) of the Appendix. 
We can see that the coefficients D ~ + 1 and D" are zero, which 
is consistent with a TVD scheme, (A8). The TVD criteria for 
the coefficients C give us, for C" + 1, 

I ( t~n+l ) An+I q 
2/27+1 0i_1/2 l_ ' r , i l /2  ..t_tti+l/22.~ Wi+l/2/n+l | 

ri+ 1/2l ~ 0 
1 + 2u7(0~+ 1/2- Oi 1/2) 

(2.28) 

and, for C", 

[ l+2uT(O,+,/z-O~_1/z)>~2v7 (1-0,_1/z) 1 - ~ ' ~  1/2 

q- (1--0i+1/2) >/0. (2.29) 
i+ 1/2_1 

From (2.29) it can be seen that the denominator in (2.28) 
must be positive and so we are left with a simpler relation, 

2VI n-+l Oi__l/2 1 -- ~)n 2 ..~Oi+l/2,.~n+ 1~|1~0. 
zr~ + 1/23 

(2.30) 

Equations (2.29) and (2.30) are the major theoretical results 
of this paper. A scheme which conforms to the constraints 
above for all grid blocks i will be TVD. 

2.3.1. Explicit Schemes 

A partially implicit scheme will have values of 0 in the 
region 0 ~< 0 <~ 1. For  an explicit scheme, 0i+ 1/2 = 0 in all 
grid blocks i. Equation (2.30) reduces trivially to 0/> 0, but 
(2.29) gives the following restriction: 

. . ] 
1 2v7 1>02 

2r i + 1/2,/ 
(2.31) 

2v,". is always chosen to be positive. This expression must be 
obeyed for all choices of~b~+ 1/2 and ~bi 1/2. If we require that 

2 ~> ~b(r) >~ 0 (2.32) 

2 >_-~b(r) ~>0, (2.33) 
r 

then (2.31) is obeyed subject to the stability limit 2v 7 ~< ½. If 
this holds everywhere, the CFL number must be less than ½. 
We mentioned this condition in Section 2.1.1. The TVD 
region described by Eqs. (2.32) and (2.33) is illustrated 
graphically in Fig. 1. 

2.3.2. Implicit Schemes 

Here 0i+1/2=0i_1/2 = 1. In this case it is (2.29) which 
reduces to a trivial expression. From (2.30) we find: 

+1 (1 ~i-- 1/2 ~ ~i-~ 1/2 ~ /. O. 2v7 (2.34 ) \ 2 2ri+ 1/2/! 

If we use the same constraints on the function ~b as in 
Eqs. (2.32) and (2.33), then (2.34) is satisfied for all CFL 
numbers. If the limiter is TVD, there is no restriction on 
the size of time step. 

2.3.3. Partially Implicit Cases 

The motivation behind a partially implicit scheme is now 
clear. For intermediate values of 0 we will be allowed to use 
larger time steps than for an explicit scheme, while retaining 
the improved resolution of shock fronts which is charac- 
teristic of explicit TVD methods. Moreover, if 0 = ½ the 
scheme is second-order accurate in time. Our scheme will be 
TVD if (2.29) and (2.30) are obeyed. 

We can simplify our analysis by keeping the constraints 
on ~b, (2.32), and (2.33) which we used for totally implicit 
and totally explicit methods. Then (2.29) and (2.30) are 
both obeyed (bar a restriction on the maximum CFL 
number) if 1 + 2u7(0i+ 1/2- 0i_ i/2) ~ 0 and the velocities 

n ~ . + 1 should be positive vi and v7 +1 are positive, v~ and v i 
if we choose to upstream weight our approximation for F. 
A discussion of a suitable scheme where v changes sign 
between two grid blocks or time steps is given below. 

For a given time step we need to find values of 0 suf- 
ficiently close to 1 to ensure stability. Schemes which choose 
different values of 0 to obey the inequalities above will have 
different stability limits. In the next section we propose 
several different methods, all of which are TVD, and which 
we test by finding numerical solutions to the Buckley- 
Leverett equation. 

2.3.4. Flow Reversal and Sonic Points 

In this discussion we have always assumed that there is an 
unambiguous definition of the direction of the flow, which 
does not change sign over a single grid block or during a 
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time step. Imagine that we attempt to calculate the numeri- 
cal fluxes FT+ 1/2 and F" + i If " " "+ ~, and ~ + 1 i+1/2 '  Vi, / ) i+ l ,  /)i /)i+1 are 
not all of the same sign, then the upstream direction is 
ambiguous, and a first-order Engquist-Osher flux must be 
used [15]. This is defined as 

FT+~/z=F'~ + Is'+~min 0 ds (2.35) 

and for the (n + 1)th time level: 

i+l/2=F~ + fs7+ ~ min 0 ds. (2.36) 

These expressions reduce to the familiar upstream weighted 
fluxes unless df/ds changes sign in the integrand (there is a 
sonic point). If df/ds is positive in both integrals then the 
upstream direction is well defined and second-order correc- 
tions to the flux may be calculated as described above. If 
df/ds is negative then FT+ 1/2 = F7+1 and similarly for the 
(n + 1)th time level. The second-order fluxes are calculated 
as before except that the subscript i is replaced by i + 1 and 
i -  1 by i. 

If s i and s~+l straddle a sonic point then both (2.35) and 
(2.36) reduce to 

El+ 1/2 = f m i n ,  (2.37) 

wherefmin is the minimum value off, i.e., its value where v = 
df/ds = 0. I f f  is known analytically, fn~n may be calculated 
exactly. Where this is not the case, a quadrature rule, using 
only the cell-centered values of f will also produce satis- 
factory results [1 ]. 

If a sonic point is detected, then the first-order flux, (2.37) 
should be used with no second-order corrections. This 
ensures that an unphysical static discontinuity is not 
produced at sonic points [ 1 ]. 

2.4. Schemes with a Pressure Gradient 

In petroleum reservoir simulation the flux f is derived 
from the gradient of a scalar field (typically the fluid 
pressure). In this section we will indicate how to solve the 
conservation equations in conjunction with a parabolic 
equation for the pressure field. We will follow Trangenstein 
and Bell's approach I-3, 24] for the simplest case of com- 
pressible two-phase flow. Extensions to multicomponent, 
multiphase flow are described throroughly in Refs. [3, 24, 
251. 

We start with Darcy's law for the mass flux v of the oil o 
and water w phases. In one dimension, 

KKro P o 8P 
Vo = (2.38) 

Po ax 

and 

KK,.w p w Op 
Vw - (2.39) 

/~w ~3x' 

where we have ignored capillary pressure. K is the absolute 
permeability, Kr is the relative permeability, p is the phase 
density, # is the viscosity, and p is the pressure. We then 
define a total flow vt = Vo + Vw, where 

U t = - -  M ~--~Px' (2.40) 

M is the total mobility: 

M = K (  gr°p° Kr~P w ) .q_ w . 
k I~o 

(2.41) 

The conserved quantities are now no longer the saturations, 
but the mass of each phase, m = ~ps. This leads to two 
hyperbolic equations for the phase masses, 

8mo + ~  
8t 8x (vtfo) = 0 (2.42) 

for oil and 

8mw +__0 
8t 8x (Vtfw) = 0 (2.43) 

for water, fo and fw are the fractional flow of oil and water, 
respectively, defined by 

KKr o P o 
fo (2.44) 

#oM 

and similarly for water. 
In a truly multiphase problem, the system of Eqs. (2.42) 

and (2.43) would yield two non-trivial characteristic 
wavespeeds with corresponding eigenvectors in saturation 
space. The equations would be updated along the eigenvec- 
tors, as described by Trangenstein and Bell for a Godunov 
scheme [3, 25]. A full discussion of this implementation is 
beyond the scope of this paper. For this simple system the 
eigenvalue analysis yields one dominant wavespeed, ~ 
O(Vtfw)/~rnw and one almost zero speed ~ ~ O(Svt/Omw) for 
slightly compressible flow. Thus the system is transported 
by essentially a single wave family, which allows us to take 
a cruder approach to this problem. Equations (2.42) and 
(2.43) are solved independently. The update follows exactly 
as for the scalar conservation law, except that the masses m 
replace saturations and the f l ux f  = vtfo for oil and Vtfw for 
water. 
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The pressure equation is derived from a pore volume 
constraint: the sum of the oil and water saturations st = 
So + Sw = 1. The value of st after one saturation update may 
be slightly different from 1. The error in s, over 3 t  is fed in 
as a source term, so that 

Equation (3.1) and the right-hand limit of (3.2) are always 
obeyed for 1 ~> 0/> 0. To find the global restriction on 0 we 
consider the most constraining values of ~bi_ 1/2, ~bi+ 1/2, and 
v 7 in (3.2). These are: ~b~_m=0, q k i + v 2 / q + v 2 = 2 ,  and 
v7 = v~ax. The left-hand limit in (3.2) then becomes 

ds----! = 0 = 1 --  s _  ! 

dt A t  

Ost~p t 0st t~mo 0st ~rn,~ (2.45) 
-Op +dm o gt 48m~ 0t 

In Section 3.4 we describe how we solve this parabolic 
pressure equation for slightly compressible two phase flow. 

3. PRACTICAL IMPLEMENTATION 

In the previous section we developed the theory of high 
order flux limiting schemes to include partially implicit 
methods. One special case, which had been studied pre- 
viously, was an explicit scheme, for which we derived TVD 
criteria for the flux limiter ~b. If the same limiter was used for 
a totally implicit formulation, then we arrived at a spatially 
second-order accurate method which was stable for all finite 
CFL numbers. 

We propose to use the same spatial flux limiter for our 
partially implicit schemes. However, this still leaves the 
choice of 0, the Crank-Nicholson weighting parameter 
undetermined. In this section we discuss several possible 
choices for 0, derive the stability limits for the proposed 
schemes, and present example numerical results. 

First, we give results for a Buckley-Leverett problem. 
Then the advantages of a partially implicit scheme are 
demonstrated by a radial flow example. Last, results from a 
one-dimensional compressible flow model with coupled 
pressure and saturation equations are presented. 

2Vmax(1 -- 0) ~< ½. (3.3) 

Equation (3.3) can be used to find the values of 0 for which 
a scheme at a given CFL number will be stable. 

If 0 = ½, the scheme is second-order accurate in time, but 
for large CFL numbers a value of 0 closer to 1 must be 
chosen to maintain the TVD property. A natural choice of 
scheme is one where 0 is chosen to be as close to ½ as 
possible; i.e., 

0 = max ,1 2),Vmax " (3.4) 

Note that this method maintains second-order accuracy for 
CFL numbers less than 1. The TVD scheme described in 
Section 2.1 was also second-order time accurate and stable 
up to CFL numbers of 1 [1]. The advantage with this 
partially implicit method is that larger time steps may be 
automatically accommodated. 

3.1.1. Resu l t s  

Numerical solutions to the Buckley-Leverett equation 
are shown in Fig. 10 at CFL numbers of 0.4, 1, and 4. The 
number of Newton iterations per timestep were 3, 3, and 5, 
respectively, which is similar to the cases illustrated in 
Fig. 8. For the solutions with CFL numbers less than or 
equal to 1, 0 = ½ and the scheme is second-order accurate in 

3.1. A Fixed Implicit Weighting 

The analysis of the previous section allowed for a 
weighting 0 which could change from one grid cell edge to 
the next. We could simplify the equations considerably by 
having a fixed 0, which would be determined by a global 
stability constraint. We will assume that 0 lies in the range 
1~>0>~0. 

We start from (2.30) with Oi+ 1/2 = Oi 1/2 = O, from which 
we obtain 

;v.+lo/1 07+_?/2 ,~,,+1 ,, ' ~ i+v2~>O (3.1) 
-- -~-'~ n + l  / 

2 z r i +  1/2,/ 

and (2.29) gives a similar condition, 

1~> £v7(1- o) (1 - ~7-v2+ ~ ]  ~> o. (3.2) 
2 2r7+ m /  
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FIG. 10. Solutions with a TVD partially implicit scheme with a fixed 
value of 0 and N =  40. Squares, CFL number  of 4; triangles, CFL = 1; 
crosses, CFL = 0.4. 
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both space and time. The resolution of the shock front is 
comparable with that for the explicit TVD scheme shown in 
Fig. 2. For a CFL number of 4, 0 = 7 from (3.4). Although 
the shock is now smeared over several grid blocks, the solu- 
tion is as accurate as a first-order implicit scheme, which has 
a time step 10 times smaller. The Use of a TVD partially 
implicit scheme can greatly enhance the accuracy and 
efficiency of the saturation update. 

3.2. Variable Weighted Schemes 

We extend our analysis to the general case where 0 is not 
fixed, but is only constrained by local, not global, stability 
criteria. This approach is of use in circumstances where the 
flow speed changes appreciably across the grid and where 
conventional methods would unnecessarily degrade the 
accuracy of the solution in slow regions in order to ensure 
stability in portions of fast flow. 

First, we look at (2.30). This will always be obeyed for 
positive 0 and v" ÷ 1, and a limiter ~b in the range described 
by Eqs. (2.32) and (2.33). 

We now investigate (2.29). Again the right-hand limit is 
always satisfied for values of 0 ~< 1. We rearrange the left- 
hand limit of (2.29) to obtain an expression for 0,+ 1/2: 

,~o,+,/2(uT + ¢7+~/~ vT) 
2r,~+ i/2 

q- 2 u n O i  - 1/2" ( 3 , 5 )  

If u," >t v,." the inequality above is always obeyed if we take 
0g_ 1/2 = 1 which leaves the simpler expression 

1 
0i+,/2>~1 2(UT+(OT+1/2/2rT+l/z) vn). (3 .8)  

If v 7 > u,'., (3.7) is always satisfied if we take the lowest 
allowed value of 0;_ 1/2, which we call 0 m i  n and we find 

(1+2(1 • " " - -  0 m i n ) ( U  / - -  1) i ) )  

0,+,/2~1 ,~(uT +(¢7+1/2/2rT+,/2)vT) (3.9) 

We can now construct a scheme with a variable value of the 
weighting parameter 0. The spatial limiter ~b is calculated as 
described in the previous section. The Crank-Nicholson 
parameter 0 is allowed to vary from Om~, = ½, which gives 
second-order time accuracy, to the totally implicit value of 
0 = 1 for very large time steps. Thus 0~+ 1/2 is chosen as 

0i+ 1/2 = max [~, 1 

• n ~ n a n d  If u i ~. v i 

O i+ l /2=max[~ ,  1 

1 1 
/~( un ~- (~i+" 1/2/-- 2ri+ " 1/2) vi')J 

(3.10) 

1 -  (2/2)(v_______~ - uT__) ] 

2(u n + (qjn+ 1/2/2r7+ 1/2) u n ) J  
(3.11) 

if v7 > uT, with similar expressions for 0~_ 1/2. 
Although (3.10) and (3.11) may appear complicated, they 

are easily coded in practice. All the parameters in the 
equations are known at the n th time step, except for the 
time averaged velocity u, (2.26). An estimate of u is made at 
each Newton iteration. 

We will now try to construct a scheme for calculating a 
suitable value for 0i+ 1/2 which satisfies this TVD property. 
Note that in Eq. (3.5) 0,+1/2 depends on 0i-1/2 and q~;-1/2 
which are calculated at the upstream cell edge. We can 
simplify this inequality to find 0~ + 1/2 in terms of parameters 
that are only measured at the same cell edge by replacing 
0i_ 1/2 and ~b~_ 1/2 with their most restrictive values. We take 
~b~_ 1/2 to be zero and obtain 

;to,+,2(uT + ~ v T )  
2r7+ 1/2 

~> -- 1 4- 2v7 ( 1 +  ~'~+U2 ~ 
2r7+ 1/2,1 

"~ ; ' (U7  - -  1)n) o i  - 1/2 (3.6) 

which is rearranged to give 

0,+ 1/2 >1 1 
(1 + 2(1 - 0 ,_  1/2)(u7 - vT)) 
2(u 7 + (~b~'+ u2/2r'/+ 1/2) un) ' 

(3.7) 

3.2.1. Results 

Numerical results are shown in Fig. 11. For CFL num- 
bers of 0.4 and 1, 0 was fixed at ½, as in the scheme described 

1 . 0  

0 . 8  

0.6 
C 
0 
0 
L. 0 .4 -  

U 

0 . 2  

O0000000C]o0 000 

° o 
+ 0 

0 

0 . %  ~ .  23. , . . . . . . . . .  3O- ....... ~-~. 
d i s t a n c e  

FIG. 11. Solutions with a TVD variably implicit scheme. Squares, 
CFL number of 4; triangles, CFL = 1; crosses, CFL = 0.4. 
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FIG. 12. Linear convection of a sin 2 pulse at a CFL number of 0.4 
across one-third of the grid with N =  30. Crosses, implicit single-point 
upstream weighting; triangles, partially implicit flux limiting scheme; 
squares, fully implicit flux limiter. 

implicit methods are more diffusive than their explicit 
counterparts. However, using 0 = ½ produces results which 
are very similar to the second-order explicit flux limiting 
scheme. Figure 13 shows the computed L1 error norms for 
N = 30 to N = 3000. Using a partially implicit method with 
0 = ½ does indeed maintain second-order accuracy. 

The real advantage of a partially implicit scheme with a 
local stability criterion can be demonstrated by a radial flow 
example, where the flow speed is higher near the injection 
point, but lower at the advancing front. The region of high 
flow speed limits an explicit method to extremely small 
timesteps, while a partially implicit method with 0 limited 
by a global stability criterion would give an over diffuse 
front. This case is described in the next section. 

3.3. A Radial Flow Problem 

In this section we present results for a radial Buckley- 
Leverett flow. If we consider water injected into the centre 
of a circular region, then (2.1) is replaced by 

in Section 3.1. Figure 9 shows the L 1 e r r o r  norm for a CFL 
number of 0.4, when 0 = ½--the results are slightly better 
than for a fully implicit flux limited scheme and comparable 
with the explicit Sweby method. For a CFL number of 4, the 
value of 0 was larger in regions of fast flow. However, since 
in this example the shock front moves with almost the 
maximum wave speed, the resolution of the discontinuity is 
very similar to that achieved for a fixed value of 0. 

Figure 12 shows the numerical solution for the convec- 
tion of a pulse with a CFL number of 0.4 for a first-order 
upstream implicit scheme, for a fully implicit flux limiting 
scheme, and for the partially implicit method with 0 = ½. As 
we saw with the Buckley-Leverett problem, the first-order 

as 1 a 
-~+r~r (rf(s, r)), (3.12) 

where r is the radial distance from the injection centre. 
Conservation of an incompressible fluid demands that 
the flux f has the form f ( s ,  r) = fw(s) /r  and, hence, (3.12) 
reduces to 

as afw(s) 
r ~ +  ar (3.13) 

This is identical to (2.1), except that the saturation s is mul- 
tiplied by r. We will calculate solutions in a series of annular 
grid blocks at equally spaced radii ri. The saturation 
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FIG. 13. LI error norms; log10 L 1 is plotted against log10 N for the 
linear advection problem shown in Fig. 12. Crosses, implicit single-point 
upstream weighting; triangles, partially implicit flux limiting scheme; 
squares, fully implicit flux limiter. 
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FIG. 14. Solutions for radial flow with N =  40 and 40 time steps. 
Squares, totally implicit scheme; triangles, partially implicit with a fixed 
weighting; crosses, variable weighting. 
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FIG. 15. Solutions for radial flow with N= 200 and 20 time steps. 
Squares, totally implicit scheme; crosses, partially implicit with variable 
weighting. 

tion itself, but the total mass of fluid per unit volume m, 
where m = qbps. q~ is the porosity of the medium and p is the 
fluid density, which depends on the pressure. 

In this example the treatment is simplified by making the 
oil and water densities equal. The density is a linear function 
of pressure and is given by 

Pw = Po = pO + c(p - Pref); (3.14) 

Pref and p0 are a reference pressure and density, respectively, 
and c is a small compressibility factor. Equation (2.45) then 
reduces to 

l [Om o Omw) 
1-StAt c(m°+mw) 2 Ot F-~p~--~-+ Ot /" (3.15) 

We then substitute (2.42) and (2.43) into (3.15), 

updates may be calculated using the same schemes that were 
derived for linear flow except that each increment in the 
saturation and all the flow velocities are divided by the grid 
cell radius r;. We use the same fractional flow fw(S) as 
before. 

In a radial geometry the local CFL number varies as 1/r 
and hence is very high near the centre of the flow, even when 
the advancing shock front is at a large radius and has a 
relatively low speed. 

Example results are shown in Fig. 14. A radial Buckley- 
Leverett flow is solved in 40 grid blocks with 40 time steps. 
The maximum CFL number in the first grid block is over 
35. This means that an explicit scheme would require at 
least 35 more time steps to ensure stability, which would be 
hopelessly inefficient. The second-order totally implicit 
method is stable, but the shock front is poorly resolved. The 
partially implicit scheme with a fixed weighting 0 gives 
virtually identical results, since the global stability criterion 
limits 0 to approximately 69/70. In a variable weighted 
scheme a value of 0 close to 1 ensures stability near r = 0, 
but good temporal and spatial accuracy is maintained near 
the shock front. Figure 15 shows a more extreme case: a 
solution with 200 grid blocks and 20 time steps. Here the 
maximum CFL number is approximately 1764. Even the 
variable weighted scheme is forced to be almost totally 
implicit along most of the front and so the results are only 
slightly superior to the totally implicit scheme. 

3.4. A Compressible Flow Example 

In this section we present solutions to the compressible 
one-dimensional two-phase flow problem described in Sec- 
tion 2.4. The f luxf is  now determined by both the fractional 
flow and the gradient of a non-trivial pressure distribution. 
The conserved quantity is now not the fluid volume satura- 

1 - -  S t C(mo + row) dp 1 Ovt 
At = q~p2 Ot ~-~bp Ox (3.16) 

and, using (2.40), 

( 1 - s t ' I =  019 O MOp. (3.17) ~tOk~ At J --cCf~st-~"~-~X OX 

This is a parabolic equation which is solved for the pressure 
field implicitly by backward differencing [26]. M is 
calculated from the saturation values at the previous time 
step. We will assume that the fluids are only slightly com- 
pressible, so the pressure field does not deviate markedly 
from the simple form seen in an incompressible flow. Hence 
a sophisticated high order scheme for solving (3.17) is not 
necessary. Moreover, this is a paper about hyperbolic 
conservation equations; the accurate numerical solution of 
parabolic equations is discussed elsewhere [26]. 

Once the pressure field is known, the hyperbolic 
equations (2.42) and (2.43) are solved using the approach of 
Section 2.4. 

We use the following parameters for the results we 
present below: Pref= 1 MPa, c=0 .1  m - 2 s  2, pw=Po=O o 
106 Kgm -3, K--- 0.5 Darcy, ~b = 0.3, #w = 1 cp, #o = 3 cp, 
Kr w = Sw2 and Kro = So .2 The fractional flow of water is the 
same as has been used in the previous examples. 

3.4.1. Results 

In Figs. 16-18 we compare the performance of an implicit 
first-order upstream weighted scheme with an implicit TVD 
method and a partially implicit TVD scheme, with a 
variable 0 calculated from (3.10) and (3.11). Results are 
presented at CFL numbers of 0.42 and 1.5. Both the com- 
puted oil and water saturations are plotted--their  respec- 
tive conservation equations are solved separately, but are 
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FIG. 16. Pressure profile with a CFL number of 0.42 and N=40. 
Crosses, implicit first-order upstream; squares, implicit TVD method; 
triangles, variably implicit TVD. 
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FIG. 17. Compressible flow with a CFL number of 0.42 and N = 40. 
Both the oil and water saturation profiles are plotted. Crosses, implicit 
first-order upstream; squares, implicit TVD method; triangles, variably 
implicit TVD. 
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FIG. 18. Compressible flow with a CFL number of 1.5 and N= 40. 
Crosses, implicit first-order upstream; squares, implicit TVD method; 
triangles, variably implicit TVD. 

linked together by the mass balance error acting as a source 
term in the pressure equation (3.17). The solutions resemble 
the Buckley-Leverett problem discussed earlier, although 
the fluid compressibility slightly smears the shock front. 
Figure 17 shows the pressure field for a CFL number of 
0,42. Note that, in contrast to the saturation profile, the 
solution is insensitive to the numerical scheme used. The 
TVD methods resolve the front better than a simple 
first-order implicit scheme, and the partially implicit 
method gives the best results, particularily at the higher 
CFL number. 

3.5. Many Components and Multidimensions 

The fully implicit and fully explicit TVD schemes have 
been implemented in a commercial three-dimensional, 
multicomponent, three-phase reservoir simulator [27]. 
Each component conservation law is solved independently 
along each grid direction. There is no eigencomponent 
decomposition nor calculation of cross terms. This primitive 
approach is forced by attempting to build a scheme 
around a simulator which has already been developed. 
Nevertheless, the results are extremely encouraging and 
show considerable improvement over single point upstream 
weighting which hitherto had been standard in the oil 
industry. Grid orientation effects are also reduced. 

Ideally the extension of these schemes to more c o m -  
plicated situations should be pursued more rigorously. 
Unfortunately there are no proofs of the TVD property 
for mixed parabolic/hyperbolic equations, or indeed for 
systems of hyperbolic equations involving the conservation 
of three or more components. Also in two and three 
dimensions the concept of total variation is no longer 
meaningful. For  systems of conservation laws an eigenstate 
decomposition and update along characteristic directions 
is recommended, along the lines described for a Godunov 
scheme by Trangenstein and Bell I-3, 24, 25]. 

We will give a brief indication of how to extend flux 
limiting schemes to two and three dimensions, although a 
detailed discussion with numerical examples is beyond the 
scope of the paper. 

In three dimensions the conservation law (2.1) becomes 

~S  
~ + V - f = 0 .  (3.18) 

The vector f, with components (f, g, h) will normally be 
derived from a fractional flow multiplied by a total velocity 
or fux. The effective wavespeed v(s) is also a vector with 
components ( df/ds, dg/ds, dh/ds ). 

We now find a numerical solution to the equation on a 
grid labelled by i, j, k coordinates and of spacing Ax, Ay, Az 
in the x, y, and z directions. Writing this equation in integral 
form yields an expression similar to (2.4), 

581/102/1-14 
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S ijkn + l = S ilkn __ 2x( Fi + l/2,j,k __ F i_  l/2,j,k ) 

-- )~y( G i, j + 1 / 2 , k  - -  G i, j -  1/2, k) 

-- ,~(Hi,  j,k + 1/2 - -  H i ,  j , k  1/2), (3.19) 

where 2 x is At /Ax ,  with similar expressions for 2y and 2~, 
and F, G, and H represent the x, y, and z components of the 
numerical flux across the grid cell faces, which may be 
calculated explicitly or implicitly, The components of v(s) 
are used to define upstream directions along all three 
coordinate axes. 

A second-order approximation for F~+ 1/2,s,k, is found by 
Taylor series about a reference state F/jk (if df/ds>~O; 
Fi+ 1,j,k otherwise), 

a x  Of At Of . 
F,+,/2,j,k=Fok +Tg+T + ... (3.20) 

from which we obtain 

A t d f ( O g  Oh) 
Fi+ l/2d'k= Fijk + Ai+ l / z 'J 'k - - -2  ds -~y+ ~Tz " (3.21) 

The final term comes from the approximation to 
&/Ot = - V. f and 

,32 , A~+l/2,j ,k-- 2 Ox 

For the partially and fully implicit schemes described 
before, the time correction in (3.20) was ignored. This leads 
to a flux of the form 

n F n + l  
F i + l / 2 , j , k = ( l - - O i + l / 2 , j , k )  Fi+l/Z,j,k"}-Oi+l/2,j,k i+l/2,j,k, 

(3.25) 

where at the n time level, 

n Oi+l/2, j,k (FT+l,j,k_F~k) (3.26) F~'+ 1/2,j,k = Fisk + 2 

with an analogous expression for the n + I time level. The G 
and H fluxes are treated similarily with different implicit 
weightings 0~,j+ 1/2,k and 0i, zk+ 1/2, respectively. Note that 
there are no cross terms, so the extension to multiple dimen- 
sions is trivial--the calculation of 0 and ~b are performed 
separately in each of the three coordinate directions. The 
only complication is that the Jacobian, (2.18), contains two 
extra non-zero elements per grid block. This method 
applied as a totally explicit or totally implicit scheme has 
been successful in two-dimensional simulation [-27], and 
when coupled with a nine-point difference operator to solve 
the pressure equation, grid orientation effects are con- 
siderably reduced. The extensions to a partially implicit 
scheme which achieves local second-order accuracy by the 
averaging of the n and n + 1 time levels will be the subject of 
further research. 

We approximate the derivatives Of/Ox by (Fi+ 1,S,k--F~k)/ 
Ax. The y and z derivatives of f are found by upstream 
weighting. For example, if dg/ds is greater than zero, then 

O g = g n  _ gn 
i,./,k i4-1 k (3.23) 

Oy 3 y  

In a totally explicit simulation all the fluxes are evaluated 
at the nth time level. One approach then is to premultiply 
Ai+ 1/2,s,k by a limiter ~b(rT+ 1/2), where 

Ai-1/z,s ,k ( 3 . 2 4 )  
r'~+ 1/2 = A i + l/2,j,k 

as in (2.6). Separate limiters in the x, y, and z directions for 
the fluxes F, G, and H, respectively, are found in the same 
way as in one dimension. The cross-term in (3.21) is not 
limited. This approach is similar to that described by Bell et 
al. [6] for a Godunov scheme. This scheme is at best 
second-order accurate, and by explicitly calculating cross- 
terms it may remove the grid orientation effects often 
encountered by operator split multidimensional methods. 

4. CONCLUSIONS 

We have presented several numerical schemes for the 
solution of conservation laws in petroleum reservoir simula- 
tion, which are stable regardless of the time step used and 
are, at best, locally second-order accurate. We developed 
these schemes by extending the theory of TVD flux limiters 
to totally and partially implicit schemes. 

Compared with first-order schemes these methods offer 
substantially improved accuracy for no extra cost, par- 
ticularly where the flow speeds vary across the mesh. In the 
examples presented here the same accuracy is achieved 
using one-half to one-quarter the number of time steps, or 
for the same computational effort, sharp fronts are resolved 
in fewer than half the number of grid blocks required by a 
single point upstream weighted method. 

The variable weighted scheme is stable for all time steps 
yet offers a performance comparable to high order explicit 
methods, which require CFL numbers less than 1. Further 
work will be aimed at extending these schemes to systems of 
conservation laws and to two and three-dimensional 
problems. 
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A.1. Total Variation Diminishing Schemes 

In this appendix we define a total variation diminishing 
scheme and derive TVD criteria for a partially implicit 
numerical scheme. These results are used in the text to 
construct suitable TVD schemes. We can only prove these 
properties for a one-dimensional scalar equation. 

We may write a partially implicit scheme for calculating 
the saturation profile s as 

as7 +~ - ~ s T =  - -,c "+~ As7 +~ + C7+~_ as~_"+~l 

- C7 as7 + C7_ 1 asT_ 1 
/-)n+l A n+l  - D 7  +1As7 +1+~/+1 ~si+l 

- D7 As7 + D7+1 asT+,. 

We rearrange (A4): 

(A4) 

sn + 1 $7 = __ Cn  l ~ S n  l _~ D 7  A s  7 

-C7+~ ' ' + 1  D7 +1 "-- Z I S i - 1  + A s n  +1' (A1) 

where the superscripts refer to the time level and the 
subscripts refer to the grid cell in which s is evaluated, and 
we have written 

(1 + C," +1 +D,'. +1) As~ '+1 

= ( 1  - c 7 -D7)  as7 

~- ~ i - -  + 1 z j a n + l  ~_ Gin_ 1 z~sn-- 1 

n , +  l A-,+ l " asT+ ~i+1 5/+1 + n i ÷ l  1. (A5) 

z~Si-- 1 ~ Si - -  S i -  1 

and 

Asi = Si-t- 1 - -  Si, 

The coefficients C and D depend on the particular numeri- 
cal algorithm used. 

The total variation, TV, is defined as [28-30] 

r v  ° =~, la*7l. (A2) 
i 

A total variation diminishing or TVD scheme has 
TV" + 1 ~ TV' .  A TVD scheme will converge to the physical 
solution under certain general conditions [29], but these 
do not automatically include the partially implicit methods 
we discuss in the text. Nevertheless, TVD schemes do pos- 
sess two useful properties, which in the numerical examples 
we present are sufficient to give reliable and convergent 
solutions. The first property is that a TVD scheme will not 
allow unphysical oscillations to develop: a monotonic 
saturation profile will remain monotonic. Second, a TVD 
scheme remains bounded, which implies that it is stable. 

In the next section we will show the constraints on the 
coefficients C and D that are necessary for a TVD scheme. 
Then we will use these constraints to construct a scheme 
which retains second-order spatial and temporal accuracy 
in smooth regions of the profile, but which is TVD and thus 
suppresses the spurious oscillations seen in unstable, or 
unrestrained second-order methods. 

A.2. Criteria for TVD Schemes 

First, we rewrite (A1) at grid cell i + 1, i.e., 

,~n+l n n n /+1 - s / + , - -  - C /  AsT + D/+I AsT+l 

If we impose that C 7 ~> 0, D 7 ~> 0, C 7 + 1/> 0, D7 + ~ ~> 0, and 
" D'>~ 1 ~>C/+ /~-0Vi  then all the coefficients in (A5) are 

positive and we may use the triangle inequality: 

(l  "~- C n+l  +D 7  + ' )  I~s "+'/ I 

(1 - C7-D7) lAsT[  

+-/r~'+', I~s7+-~1+c7 1 I~sT_ ,I 

.~_F)n+l n + l  n ]AsT+i}. (A6)  ~i+1 IAsi+ll +Di+1 

We now sum both sides of (A6) over all the grid cells i. We 
note that 

c, I~s,I = ~ c,_  , 14s, ,I 
i i 

with similar relations for D, and thus (A6) gives us 

Z [~sn+l[  ~ L  [ ASh[" (A7) 
i i 

Hence TV" + 1 ~ TV' .  

To conclude, we have shown that a difference scheme 
written as in (A1) is TVD, provided the coefficients satisfy 

c7>>.o 

DT>~O 

C7+1>0 

D'~ +1 >i0 

1 >>. C 7 + D 7 > 0  

(AS) 

-- ]')n + 1 -- n + 1 (A3) for all grid blocks i. C7 +l As7 +l +~i+1 zJsi+l. 
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